OLMo-2-1124-7B-DPO

3个月前发布 1 00

OLMo-2-1124-7B-DPO是由Allen人工智能研究所开发的一个大型语言模型,经过特定的数据集进行监督式微调,并进一步进行了DPO训练。该模型旨在提供在多种任务上,包括聊天、数学问题解答、文本生成等的高性能表现。它是基于Transformers库构建的,支持PyTorch,并以Apache 2.0许可发布。

收录时间:
2025-05-30
OLMo-2-1124-7B-DPOOLMo-2-1124-7B-DPO

OLMo-2-1124-7B-DPO是由Allen人工智能研究所开发的一个大型语言模型,经过特定的数据集进行监督式微调,并进一步进行了DPO训练。该模型旨在提供在多种任务上,包括聊天、数学问题解答、文本生成等的高性能表现。它是基于Transformers库构建的,支持PyTorch,并以Apache 2.0许可发布。

数据统计

相关导航

Dria-Agent-a-7B

Dria-Agent-a-7B

Dria-Agent-a-7B是一个基于Qwen2.5-Coder系列训练的大型语言模型,专注于代理应用。它采用Pythonic函数调用方式,与传统JSON函数调用方法相比,具有单次并行多函数调用、自由形式推理和动作以及即时复杂解决方案生成等优势。该模型在多个基准测试中表现出色,包括Berkeley Function Calling Leaderboard (BFCL)、MMLU-Pro和Dria-Pythonic-Agent-Benchmark (DPAB)。模型大小为76.2亿参数,采用BF16张量类型,支持文本生成任务。其主要优点包括强大的编程辅助能力、高效的函数调用方式以及在特定领域的高准确率。该模型适用于需要复杂逻辑处理和多步骤任务执行的应用场景,如自动化编程、智能代理等。目前,该模型在Hugging Face平台上提供,供用户免费使用。
Llama-3-Patronus-Lynx-70B-Instruct

Llama-3-Patronus-Lynx-70B-Instruct

PatronusAI/Llama-3-Patronus-Lynx-70B-Instruct是一个基于Llama-3架构的大型语言模型,旨在检测在RAG设置中的幻觉问题。该模型通过分析给定的文档、问题和答案,评估答案是否忠实于文档内容。其主要优点在于高精度的幻觉检测能力和强大的语言理解能力。该模型由Patronus AI开发,适用于需要高精度信息验证的场景,如金融分析、医学研究等。该模型目前为免费使用,但具体的商业应用可能需要与开发者联系。

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...