Llama-3-Patronus-Lynx-8B-Instruct-Q4_K_M-GGUF

7个月前发布 16 00

该模型是量化版大型语言模型,采用4位量化技术,降低存储与计算需求,适用于自然语言处理,参数量8.03B,免费且可用于非商业用途,适合资源受限环境下高性能语言应用需求者。

收录时间:
2025-06-02
Llama-3-Patronus-Lynx-8B-Instruct-Q4_K_M-GGUFLlama-3-Patronus-Lynx-8B-Instruct-Q4_K_M-GGUF

该模型是量化版大型语言模型,采用4位量化技术,降低存储与计算需求,适用于自然语言处理,参数量8.03B,免费且可用于非商业用途,适合资源受限环境下高性能语言应用需求者。

数据统计

相关导航

EXAONE-3.5-2.4B-Instruct-GGUF

EXAONE-3.5-2.4B-Instruct-GGUF

EXAONE-3.5-2.4B-Instruct-GGUF是由LG AI Research开发的一系列双语(英语和韩语)指令调优的生成型模型,参数范围从2.4B到32B。这些模型支持长达32K令牌的长上下文处理,并在真实世界用例和长上下文理解方面展现出最先进的性能,同时在与近期发布的类似大小模型相比,在通用领域保持竞争力。该模型的重要性在于其优化了在小型或资源受限设备上的部署,同时提供了强大的性能。
CAG

CAG

CAG(Cache-Augmented Generation)是一种创新的语言模型增强技术,旨在解决传统RAG(Retrieval-Augmented Generation)方法中存在的检索延迟、检索错误和系统复杂性等问题。通过在模型上下文中预加载所有相关资源并缓存其运行时参数,CAG能够在推理过程中直接生成响应,无需进行实时检索。这种方法不仅显著降低了延迟,提高了可靠性,还简化了系统设计,使其成为一种实用且可扩展的替代方案。随着大型语言模型(LLMs)上下文窗口的不断扩展,CAG有望在更复杂的应用场景中发挥作用。
InternVL2_5-1B

InternVL2_5-1B

InternVL 2.5是一系列先进的多模态大型语言模型(MLLM),它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,保持了其核心模型架构。该模型集成了新增量预训练的InternViT与各种预训练的大型语言模型(LLMs),如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5支持多图像和视频数据,通过动态高分辨率训练方法,增强了模型处理多模态数据的能力。
MiniMax-Text-01

MiniMax-Text-01

MiniMax-Text-01是一个由MiniMaxAI开发的大型语言模型,拥有4560亿总参数,其中每个token激活459亿参数。它采用了混合架构,结合了闪电注意力、softmax注意力和专家混合(MoE)技术,通过先进的并行策略和创新的计算-通信重叠方法,如线性注意力序列并行主义加(LASP+)、变长环形注意力、专家张量并行(ETP)等,将训练上下文长度扩展到100万token,并能在推理时处理长达400万token的上下文。在多个学术基准测试中,MiniMax-Text-01展现出了顶级模型的性能。

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...