TranscribroTranscribro是一款运行在Android平台上的私有、设备端语音识别键盘和文字服务应用,它使用whisper.cpp来运行OpenAI Whisper系列模型,并结合Silero VAD进行语音活动检测。该应用提供了语音输入键盘,允许用户通过语音进行文字输入,并且可以被其他应用显式使用,或者设置为用户选择的语音转文字应用,部分应用可能会使用它来进行语音转文字。Transcribro的背景是为用户提供一种更安全、更私密的语音转文字解决方案,避免了云端处理可能带来的隐私泄露问题。该应用是开源的,用户可以自由地查看、修改和分发代码。
VALL-E 2VALL-E 2 是微软亚洲研究院推出的一款语音合成模型,它通过重复感知采样和分组编码建模技术,大幅提升了语音合成的稳健性与自然度。该模型能够将书面文字转化为自然语音,适用于教育、娱乐、多语言交流等多个领域,为提高无障碍性、增强跨语言交流等方面发挥重要作用。
FlowSpeechFlowSpeech是一个免费的 AI 播客生成器,利用最新的语音合成技术将文本转换为自然人声,适合各种用户需求。它支持多种格式的输入,包括 PDF、TXT 等,方便用户快速获取信息。提供多种订阅选项,帮助创作者更高效地制作播客。
whisper-diarizationwhisper-diarization是一个结合了Whisper自动语音识别(ASR)能力、声音活动检测(VAD)和说话人嵌入技术的开源项目。它通过提取音频中的声音部分来提高说话人嵌入的准确性,然后使用Whisper生成转录文本,并通过WhisperX校正时间戳和对齐,以减少由于时间偏移导致的分割错误。接着,使用MarbleNet进行VAD和分割以排除静音,TitaNet用于提取说话人嵌入以识别每个段落的说话人,最后将结果与WhisperX生成的时间戳关联,基于时间戳检测每个单词的说话人,并使用标点模型重新对齐以补偿小的时间偏移。
FireRedASR-AED-LFireRedASR-AED-L 是一个开源的工业级自动语音识别模型,专为满足高效率和高性能的语音识别需求而设计。该模型采用基于注意力的编码器-解码器架构,支持普通话、中文方言和英语等多种语言。它在公共普通话语音识别基准测试中达到了新的最高水平,并且在歌唱歌词识别方面表现出色。该模型的主要优点包括高性能、低延迟和广泛的适用性,适用于各种语音交互场景。其开源特性使得开发者可以自由地使用和修改代码,进一步推动语音识别技术的发展。
EMOVAEMOVA(EMotionally Omni-present Voice Assistant)是一个多模态语言模型,它能够进行端到端的语音处理,同时保持领先的视觉-语言性能。该模型通过语义-声学解耦的语音分词器,实现了情感丰富的多模态对话,并在视觉-语言和语音基准测试中达到了最先进的性能。