Dria-Agent-a-7B

3个月前发布 1 00

Dria-Agent-a-7B是一个基于Qwen2.5-Coder系列训练的大型语言模型,专注于代理应用。它采用Pythonic函数调用方式,与传统JSON函数调用方法相比,具有单次并行多函数调用、自由形式推理和动作以及即时复杂解决方案生成等优势。该模型在多个基准测试中表现出色,包括Berkeley Function Calling Le...

收录时间:
2025-05-30
Dria-Agent-a-7BDria-Agent-a-7B

Dria-Agent-a-7B是一个基于Qwen2.5-Coder系列训练的大型语言模型,专注于代理应用。它采用Pythonic函数调用方式,与传统JSON函数调用方法相比,具有单次并行多函数调用、自由形式推理和动作以及即时复杂解决方案生成等优势。该模型在多个基准测试中表现出色,包括Berkeley Function Calling Leaderboard (BFCL)、MMLU-Pro和Dria-Pythonic-Agent-Benchmark (DPAB)。模型大小为76.2亿参数,采用BF16张量类型,支持文本生成任务。其主要优点包括强大的编程辅助能力、高效的函数调用方式以及在特定领域的高准确率。该模型适用于需要复杂逻辑处理和多步骤任务执行的应用场景,如自动化编程、智能代理等。目前,该模型在Hugging Face平台上提供,供用户免费使用。

数据统计

相关导航

DeepSeek-R1-Distill-Qwen-32B

DeepSeek-R1-Distill-Qwen-32B

DeepSeek-R1-Distill-Qwen-32B 是由 DeepSeek 团队开发的高性能语言模型,基于 Qwen-2.5 系列进行蒸馏优化。该模型在多项基准测试中表现出色,尤其是在数学、代码和推理任务上。其主要优点包括高效的推理能力、强大的多语言支持以及开源特性,便于研究人员和开发者进行二次开发和应用。该模型适用于需要高性能文本生成的场景,如智能客服、内容创作和代码辅助等,具有广泛的应用前景。
InternVL2_5-2B

InternVL2_5-2B

InternVL 2.5 是一个先进的多模态大型语言模型系列,它在InternVL 2.0的基础上,通过引入显著的训练和测试策略增强以及数据质量提升,维持了其核心模型架构。该模型整合了新增量预训练的InternViT与各种预训练的大型语言模型,例如InternLM 2.5和Qwen 2.5,使用随机初始化的MLP投影器。InternVL 2.5 支持多图像和视频数据,具备动态高分辨率训练方法,能够在处理多模态数据时提供更好的性能。
Magma-8B

Magma-8B

Magma-8B 是微软开发的一款多模态 AI 基础模型,专为研究多模态 AI 代理而设计。它结合了文本和图像输入,能够生成文本输出,并具备视觉规划和代理能力。该模型使用了 Meta LLaMA-3 作为语言模型骨干,并结合 CLIP-ConvNeXt-XXLarge 视觉编码器,支持从无标签视频数据中学习时空关系,具有强大的泛化能力和多任务适应性。Magma-8B 在多模态任务中表现出色,特别是在空间理解和推理方面。它为多模态 AI 研究提供了强大的工具,推动了虚拟和现实环境中复杂交互的研究。

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...