EXAONE-3.5-7.8B-Instruct-AWQ

7个月前发布 10 00

EXAONE 3.5是LG AI Research开发的一系列指令调优的双语(英语和韩语)生成模型,参数范围从2.4B到32B。这些模型支持长达32K令牌的长上下文处理,并在真实世界用例和长上下文理解方面展现出最先进的性能,同时在与最近发布的类似大小模型相比的一般领域中保持竞争力。EXAONE 3.5模型包括:1) 2.4B模型,优化用于...

收录时间:
2025-05-30
EXAONE-3.5-7.8B-Instruct-AWQEXAONE-3.5-7.8B-Instruct-AWQ

EXAONE 3.5是LG AI Research开发的一系列指令调优的双语(英语和韩语)生成模型,参数范围从2.4B到32B。这些模型支持长达32K令牌的长上下文处理,并在真实世界用例和长上下文理解方面展现出最先进的性能,同时在与最近发布的类似大小模型相比的一般领域中保持竞争力。EXAONE 3.5模型包括:1) 2.4B模型,优化用于小型或资源受限设备的部署;2) 7.8B模型,与前代模型大小相匹配,但提供改进的性能;3) 32B模型,提供强大的性能。

数据统计

相关导航

EXAONE-3.5-2.4B-Instruct-GGUF

EXAONE-3.5-2.4B-Instruct-GGUF

EXAONE-3.5-2.4B-Instruct-GGUF是由LG AI Research开发的一系列双语(英语和韩语)指令调优的生成型模型,参数范围从2.4B到32B。这些模型支持长达32K令牌的长上下文处理,并在真实世界用例和长上下文理解方面展现出最先进的性能,同时在与近期发布的类似大小模型相比,在通用领域保持竞争力。该模型的重要性在于其优化了在小型或资源受限设备上的部署,同时提供了强大的性能。
Magma-8B

Magma-8B

Magma-8B 是微软开发的一款多模态 AI 基础模型,专为研究多模态 AI 代理而设计。它结合了文本和图像输入,能够生成文本输出,并具备视觉规划和代理能力。该模型使用了 Meta LLaMA-3 作为语言模型骨干,并结合 CLIP-ConvNeXt-XXLarge 视觉编码器,支持从无标签视频数据中学习时空关系,具有强大的泛化能力和多任务适应性。Magma-8B 在多模态任务中表现出色,特别是在空间理解和推理方面。它为多模态 AI 研究提供了强大的工具,推动了虚拟和现实环境中复杂交互的研究。
SmolVLM-256M-Instruct

SmolVLM-256M-Instruct

SmolVLM-256M 是由 Hugging Face 开发的多模态模型,基于 Idefics3 架构,专为高效处理图像和文本输入而设计。它能够回答关于图像的问题、描述视觉内容或转录文本,且仅需不到 1GB 的 GPU 内存即可运行推理。该模型在多模态任务上表现出色,同时保持轻量化架构,适合在设备端应用。其训练数据来自 The Cauldron 和 Docmatix 数据集,涵盖文档理解、图像描述等多领域内容,使其具备广泛的应用潜力。目前该模型在 Hugging Face 平台上免费提供,旨在为开发者和研究人员提供强大的多模态处理能力。

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...