whisper-ner-v1

7个月前发布 7 00

Whisper-NER是一个创新的模型,它允许同时进行语音转录和实体识别。该模型支持开放类型的命名实体识别(NER),能够识别多样化和不断演变的实体。Whisper-NER旨在作为自动语音识别(ASR)和NER下游任务的强大基础模型,并且可以在特定数据集上进行微调以提高性能。

收录时间:
2025-05-29
whisper-ner-v1whisper-ner-v1

Whisper-NER是一个创新的模型,它允许同时进行语音转录和实体识别。该模型支持开放类型的命名实体识别(NER),能够识别多样化和不断演变的实体。Whisper-NER旨在作为自动语音识别(ASR)和NER下游任务的强大基础模型,并且可以在特定数据集上进行微调以提高性能。

数据统计

相关导航

FireRedASR-AED-L

FireRedASR-AED-L

FireRedASR-AED-L 是一个开源的工业级自动语音识别模型,专为满足高效率和高性能的语音识别需求而设计。该模型采用基于注意力的编码器-解码器架构,支持普通话、中文方言和英语等多种语言。它在公共普通话语音识别基准测试中达到了新的最高水平,并且在歌唱歌词识别方面表现出色。该模型的主要优点包括高性能、低延迟和广泛的适用性,适用于各种语音交互场景。其开源特性使得开发者可以自由地使用和修改代码,进一步推动语音识别技术的发展。
BetterWhisperX

BetterWhisperX

BetterWhisperX是一个基于WhisperX改进的自动语音识别模型,它能够提供快速的语音转文字服务,并具备词级时间戳和说话人识别功能。这个工具对于需要处理大量音频数据的研究人员和开发者来说非常重要,因为它可以大幅提高语音数据处理的效率和准确性。产品背景基于OpenAI的Whisper模型,但做了进一步的优化和改进。目前,该项目是免费且开源的,定位于为开发者社区提供更高效、更准确的语音识别工具。
Llama3-s v0.2

Llama3-s v0.2

Llama3-s v0.2 是 Homebrew Computer Company 开发的多模态检查点,专注于提升语音理解能力。该模型通过早期融合语义标记的方式,利用社区反馈进行改进,以简化模型结构,提高压缩效率,并实现一致的语音特征提取。Llama3-s v0.2 在多个语音理解基准测试中表现稳定,并提供了实时演示,允许用户亲自体验其功能。尽管模型仍在早期开发阶段,存在一些限制,如对音频压缩敏感、无法处理超过10秒的音频等,但团队计划在未来更新中解决这些问题。
Whisper Turbo.online

Whisper Turbo.online

Whisper Turbo 是基于 Whisper Large-v3 模型优化的语音识别工具,专为快速语音转录而设计。它利用先进的 AI 技术,能够高效地将不同音频源的语音转换为文本,支持多种语言和口音。该工具免费提供给用户,旨在帮助人们节省时间和精力,提高工作效率。其主要面向需要快速准确转录语音内容的用户,如博主、内容创作者、企业等,为他们提供便捷的语音转文字解决方案。
ElevenLabs Scribe

ElevenLabs Scribe

Scribe 是由 ElevenLabs 开发的高精度语音转文字模型,旨在处理真实世界音频的不可预测性。它支持99种语言,提供单词级时间戳、说话人分离和音频事件标记等功能。Scribe 在 FLEURS 和 Common Voice 基准测试中表现卓越,超越了 Gemini 2.0 Flash、Whisper Large V3 和 Deepgram Nova-3 等领先模型。它显著降低了传统服务不足语言(如塞尔维亚语、粤语和马拉雅拉姆语)的错误率,这些语言在竞争模型中的错误率通常超过40%。Scribe 提供 API 接口供开发者集成,并将推出低延迟版本以支持实时应用。

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...