Aquila-VL-2B-llava-qwen

7个月前发布 9 00

Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结...

收录时间:
2025-05-29
Aquila-VL-2B-llava-qwenAquila-VL-2B-llava-qwen

Aquila-VL-2B模型是一个基于LLava-one-vision框架训练的视觉语言模型(VLM),选用Qwen2.5-1.5B-instruct模型作为语言模型(LLM),并使用siglip-so400m-patch14-384作为视觉塔。该模型在自建的Infinity-MM数据集上进行训练,包含约4000万图像-文本对。该数据集结合了从互联网收集的开源数据和使用开源VLM模型生成的合成指令数据。Aquila-VL-2B模型的开源,旨在推动多模态性能的发展,特别是在图像和文本的结合处理方面。

数据统计

相关导航

EXAONE-3.5-7.8B-Instruct-GGUF

EXAONE-3.5-7.8B-Instruct-GGUF

EXAONE 3.5是LG AI Research开发的一系列双语(英语和韩语)指令调优的生成模型,参数从2.4B到32B不等。这些模型支持长达32K令牌的长上下文处理,在真实世界用例和长上下文理解方面展现出了最先进的性能,同时在与近期发布的类似大小模型相比,在通用领域保持竞争力。EXAONE 3.5模型包括:1) 2.4B模型,优化用于部署在小型或资源受限的设备上;2) 7.8B模型,与前代模型大小匹配但提供改进的性能;3) 32B模型,提供强大的性能。
SmolVLM2

SmolVLM2

SmolVLM2 是一种轻量级的视频语言模型,旨在通过分析视频内容生成相关的文本描述或视频亮点。该模型具有高效性、低资源消耗的特点,适合在多种设备上运行,包括移动设备和桌面客户端。其主要优点是能够快速处理视频数据并生成高质量的文本输出,为视频内容创作、视频分析和教育等领域提供了强大的技术支持。该模型由 Hugging Face 团队开发,定位为高效、轻量化的视频处理工具,目前处于实验阶段,用户可以免费试用。
InternVL2_5-38B-MPO

InternVL2_5-38B-MPO

InternVL2.5-MPO是一个先进的多模态大型语言模型系列,基于InternVL2.5和混合偏好优化(MPO)构建。该系列模型在多模态任务中表现出色,能够处理图像、文本和视频数据,并生成高质量的文本响应。模型采用'ViT-MLP-LLM'范式,通过像素unshuffle操作和动态分辨率策略优化视觉处理能力。此外,模型还引入了多图像和视频数据的支持,进一步扩展了其应用场景。InternVL2.5-MPO在多模态能力评估中超越了多个基准模型,证明了其在多模态领域的领先地位。

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...