KET-RAG

3个月前发布 1 00

KET-RAG(Knowledge-Enhanced Text Retrieval Augmented Generation)是一个强大的检索增强型生成框架,结合了知识图谱技术。它通过多粒度索引框架(如知识图谱骨架和文本-关键词二分图)实现高效的知识检索和生成。该框架在降低索引成本的同时,显著提升了检索和生成质量,适用于大规模 RAG 应...

收录时间:
2025-06-02

KET-RAG(Knowledge-Enhanced Text Retrieval Augmented Generation)是一个强大的检索增强型生成框架,结合了知识图谱技术。它通过多粒度索引框架(如知识图谱骨架和文本-关键词二分图)实现高效的知识检索和生成。该框架在降低索引成本的同时,显著提升了检索和生成质量,适用于大规模 RAG 应用场景。KET-RAG 基于 Python 开发,支持灵活的配置和扩展,适用于需要高效知识检索和生成的开发人员和研究人员。

数据统计

相关导航

WebWalker

WebWalker

WebWalker是一个由阿里巴巴集团通义实验室开发的多智能体框架,用于评估大型语言模型(LLMs)在网页遍历任务中的表现。该框架通过模拟人类浏览网页的方式,通过探索和评估范式来系统地提取高质量数据。WebWalker的主要优点在于其创新的网页遍历能力,能够深入挖掘多层级信息,弥补了传统搜索引擎在处理复杂问题时的不足。该技术对于提升语言模型在开放域问答中的表现具有重要意义,尤其是在需要多步骤信息检索的场景中。WebWalker的开发旨在推动语言模型在信息检索领域的应用和发展。
Debate

Debate

Debate是由FlagEval在Hugging Face平台上创建的一个空间,旨在提供一个辩论的场所。这个空间可能利用了自然语言处理技术来促进用户之间的讨论和辩论,帮助用户提高批判性思维和沟通技巧。它可能包含了多种语言模型,以支持不同语言的用户参与。Debate作为一个教育工具,对于学习语言、逻辑和辩论技巧的人来说是非常重要的。目前,该产品是免费提供的,定位于教育和自我提升的市场。

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...