Phi-4-multimodal-instruct

3个月前发布 1 00

Phi-4-multimodal-instruct 是微软开发的多模态基础模型,支持文本、图像和音频输入,生成文本输出。该模型基于Phi-3.5和Phi-4.0的研究和数据集构建,经过监督微调、直接偏好优化和人类反馈强化学习等过程,以提高指令遵循能力和安全性。它支持多种语言的文本、图像和音频输入,具有128K的上下文长度,适用于多种多模态...

收录时间:
2025-06-02
Phi-4-multimodal-instructPhi-4-multimodal-instruct

Phi-4-multimodal-instruct 是微软开发的多模态基础模型,支持文本、图像和音频输入,生成文本输出。该模型基于Phi-3.5和Phi-4.0的研究和数据集构建,经过监督微调、直接偏好优化和人类反馈强化学习等过程,以提高指令遵循能力和安全性。它支持多种语言的文本、图像和音频输入,具有128K的上下文长度,适用于多种多模态任务,如语音识别、语音翻译、视觉问答等。该模型在多模态能力上取得了显著提升,尤其在语音和视觉任务上表现出色。它为开发者提供了强大的多模态处理能力,可用于构建各种多模态应用。

数据统计

相关导航

M2RAG

M2RAG

M2RAG是一个用于多模态上下文中的检索增强生成的基准测试代码库。它通过多模态检索文档来回答问题,评估多模态大语言模型(MLLMs)在利用多模态上下文知识方面的能力。该模型在图像描述、多模态问答、事实验证和图像重排等任务上进行了评估,旨在提升模型在多模态上下文学习中的有效性。M2RAG为研究人员提供了一个标准化的测试平台,有助于推动多模态语言模型的发展。
DeepSeek-VL2-Small

DeepSeek-VL2-Small

DeepSeek-VL2是一系列先进的大型混合专家(MoE)视觉语言模型,相较于前代DeepSeek-VL有显著提升。该模型系列在视觉问答、光学字符识别、文档/表格/图表理解以及视觉定位等多种任务上展现出卓越的能力。DeepSeek-VL2由三种变体组成:DeepSeek-VL2-Tiny、DeepSeek-VL2-Small和DeepSeek-VL2,分别拥有10亿、28亿和45亿激活参数。DeepSeek-VL2在激活参数相似或更少的情况下,与现有的开源密集型和基于MoE的模型相比,达到了竞争性或最先进的性能。
xiaozhi-esp32

xiaozhi-esp32

xiaozhi-esp32 是一个开源的 AI 聊天机器人项目,基于乐鑫的 ESP-IDF 开发。它将大语言模型与硬件设备相结合,使用户能够打造出个性化的 AI 伴侣。项目支持多种语言的语音识别与对话,具备声纹识别功能,能够识别不同用户的语音特征。其开源特性降低了 AI 硬件开发的门槛,为学生、开发者等群体提供了宝贵的学习资源,有助于推动 AI 技术在硬件领域的应用与创新。项目目前免费开源,适合不同层次的开发者进行学习与二次开发。
PaliGemma2-3b-pt-224

PaliGemma2-3b-pt-224

PaliGemma 2是由Google开发的视觉-语言模型,它结合了SigLIP视觉模型和Gemma 2语言模型的能力,能够处理图像和文本输入,并生成相应的文本输出。该模型在多种视觉-语言任务上表现出色,如图像描述、视觉问答等。其主要优点包括强大的多语言支持、高效的训练架构以及在多种任务上的优异性能。PaliGemma 2的开发背景是为了解决视觉和语言之间的复杂交互问题,帮助研究人员和开发者在相关领域取得突破。

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...