E3Gen

3个月前发布 1 00

E3Gen是一种新型的数字头像生成方法,能够实时生成高保真度的头像,具有详细的衣物褶皱,并支持多种视角和全身姿势的全面控制,以及属性转移和局部编辑。它通过将3D高斯编码到结构化的2D UV空间中,解决了3D高斯与当前生成流程不兼容的问题,并探索了在涉及多个主体的训练中3D高斯的表现力动画。

收录时间:
2025-06-01

E3Gen是一种新型的数字头像生成方法,能够实时生成高保真度的头像,具有详细的衣物褶皱,并支持多种视角和全身姿势的全面控制,以及属性转移和局部编辑。它通过将3D高斯编码到结构化的2D UV空间中,解决了3D高斯与当前生成流程不兼容的问题,并探索了在涉及多个主体的训练中3D高斯的表现力动画。

数据统计

相关导航

URAvatar

URAvatar

URAvatar是一种新型的头像生成技术,它能够通过手机扫描在未知光照条件下创建出逼真的、可重新照明的头部头像。与传统的通过逆向渲染估计参数反射率参数的方法不同,URAvatar直接模拟学习辐射传递,将全局光照传输有效地整合到实时渲染中。这项技术的重要性在于它能够从单一环境的手机扫描中重建出在多种环境中看起来都逼真的头部模型,并且能够实时驱动和重新照明。
UltrAvatar

UltrAvatar

UltrAvatar是一款逼真可动的3D头像生成模型,旨在缩小虚拟与现实世界体验之间的差距。它采用Score Distillation Sampling (SDS) loss和可微分渲染器以及文本条件来引导扩散模型生成3D头像。与现有作品相比,UltrAvatar通过增强几何保真度和优越的物理渲染纹理质量,提出了一种新颖的3D头像生成方法。它通过扩散色彩提取模型和真实性引导纹理扩散模型,去除不需要的光照效果,呈现真实的扩散颜色,使生成的头像能够在各种光照条件下呈现。我们在实验证明了该方法的有效性和鲁棒性,在实验中大幅优于现有最先进的方法。
RodinHD

RodinHD

RodinHD是一个基于扩散模型的高保真3D头像生成技术,由Bowen Zhang、Yiji Cheng等研究者开发,旨在从单一肖像图像生成细节丰富的3D头像。该技术解决了现有方法在捕捉发型等复杂细节时的不足,通过新颖的数据调度策略和权重整合正则化项,提高了解码器渲染锐利细节的能力。此外,通过多尺度特征表示和交叉注意力机制,优化了肖像图像的引导效果,生成的3D头像在细节上显著优于以往方法,并且能够泛化到野外肖像输入。
DreamWaltz-G

DreamWaltz-G

DreamWaltz-G是一个创新的框架,用于从文本驱动生成3D头像和表达性的全身动画。它的核心是骨架引导的评分蒸馏和混合3D高斯头像表示。该框架通过整合3D人类模板的骨架控制到2D扩散模型中,提高了视角和人体姿势的一致性,从而生成高质量的头像,解决了多重面孔、额外肢体和模糊等问题。此外,混合3D高斯头像表示通过结合神经隐式场和参数化3D网格,实现了实时渲染、稳定的SDS优化和富有表现力的动画。DreamWaltz-G在生成和动画3D头像方面非常有效,无论是视觉质量还是动画表现力都超越了现有方法。此外,该框架还支持多种应用,包括人类视频重演和多主题场景组合。
BakedAvatar

BakedAvatar

BakedAvatar是一种用于实时神经头像合成的全新表示,可部署在标准多边形光栅化流水线中。该方法从学习到的头部等值面提取可变形的多层网格,并计算可烘焙到静态纹理中的表情、姿势和视角相关外观,从而为实时4D头像合成提供支持。我们提出了一个三阶段的神经头像合成流水线,包括学习连续变形、流形和辐射场,提取分层网格和纹理,以及通过微分光栅化来微调纹理细节。实验结果表明,我们的表示产生了与其他最先进方法相当的综合结果,并显著减少了所需的推理时间。我们进一步展示了从单眼视频中产生的各种头像合成结果,包括视图合成、面部重现、表情编辑和姿势编辑,所有这些都以交互式帧率进行。

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...