Aragon – 图像生成

8个月前发布 7 00

使用AI可以比以前快10倍地创建惊人的艺术和图像。

收录时间:
2025-05-30
Aragon – 图像生成Aragon – 图像生成

使用AI可以比以前快10倍地创建惊人的艺术和图像。

数据统计

相关导航

IMM

IMM

Inductive Moment Matching (IMM) 是一种先进的生成模型技术,主要用于高质量图像生成。该技术通过创新的归纳矩匹配方法,显著提高了生成图像的质量和多样性。其主要优点包括高效性、灵活性以及对复杂数据分布的强大建模能力。IMM 由 Luma AI 和斯坦福大学的研究团队开发,旨在推动生成模型领域的发展,为图像生成、数据增强和创意设计等应用提供强大的技术支持。该项目开源了代码和预训练模型,方便研究人员和开发者快速上手和应用。
Janus Pro

Janus Pro

Janus Pro 是由 DeepSeek 技术驱动的先进 AI 图像生成与理解平台。它采用革命性的统一变换器架构,能够高效处理复杂的多模态操作,实现图像生成和理解的卓越性能。该平台训练了超过 9000 万个样本,其中包括 7200 万个合成美学数据点,确保生成的图像在视觉上具有吸引力且上下文准确。Janus Pro 为开发者和研究人员提供强大的视觉 AI 能力,帮助他们实现从创意到视觉叙事的转变。平台提供免费试用,适合需要高质量图像生成和分析的用户。
DiffSensei

DiffSensei

DiffSensei是一个结合了多模态大型语言模型(LLMs)和扩散模型的定制化漫画生成模型。它能够根据用户提供的文本提示和角色图像,生成可控制的黑白漫画面板,并具有灵活的角色适应性。这项技术的重要性在于它将自然语言处理与图像生成相结合,为漫画创作和个性化内容生成提供了新的可能性。DiffSensei模型以其高质量的图像生成、多样化的应用场景以及对资源的高效利用而受到关注。目前,该模型在GitHub上公开,可以免费下载使用,但具体的使用可能需要一定的计算资源。
1.58-bit FLUX

1.58-bit FLUX

1.58-bit FLUX是一种先进的文本到图像生成模型,通过使用1.58位权重(即{-1, 0, +1}中的值)来量化FLUX.1-dev模型,同时保持生成1024x1024图像的可比性能。该方法无需访问图像数据,完全依赖于FLUX.1-dev模型的自监督。此外,开发了一种定制的内核,优化了1.58位操作,实现了模型存储减少7.7倍,推理内存减少5.1倍,并改善了推理延迟。在GenEval和T2I Compbench基准测试中的广泛评估表明,1.58-bit FLUX在保持生成质量的同时显著提高了计算效率。

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...