EaseVoice TrainerEaseVoice Trainer 是一个后端项目,旨在简化和增强语音合成与转换训练过程。该项目基于 GPT-SoVITS 进行改进,注重用户体验和系统的可维护性。其设计理念不同于原始项目,旨在提供更模块化和定制化的解决方案,适用于从小规模实验到大规模生产的多种场景。该工具可以帮助开发者和研究人员更高效地进行语音合成和转换的研究与开发。
pdf-to-podcastpdf-to-podcast是一个基于人工智能技术的生产力工具,能够将PDF文档转换成播客节目。它使用OpenAI的文本到语音模型和Google Gemini技术,将PDF内容处理成适合音频播客的自然对话,并输出为MP3文件。该工具的主要优点是能够将静态的文档内容转化为动态的音频内容,方便用户在移动设备上收听,同时也可以作为播客节目的内容来源。
WhisperNERWhisperNER是一个结合了自动语音识别(ASR)和命名实体识别(NER)的统一模型,具备零样本能力。该模型旨在作为ASR带NER的下游任务的强大基础模型,并可以在特定数据集上进行微调以提高性能。WhisperNER的重要性在于其能够同时处理语音识别和实体识别任务,提高了处理效率和准确性,尤其在多语言和跨领域的场景中具有显著优势。
Sesame CSMCSM 是一个由 Sesame 开发的对话式语音生成模型,它能够根据文本和音频输入生成高质量的语音。该模型基于 Llama 架构,并使用 Mimi 音频编码器。它主要用于语音合成和交互式语音应用,例如语音助手和教育工具。CSM 的主要优点是能够生成自然流畅的语音,并且可以通过上下文信息优化语音输出。该模型目前是开源的,适用于研究和教育目的。
SpeechGPT2SpeechGPT2是由复旦大学计算机科学学院开发的端到端语音对话语言模型,能够感知并表达情感,并根据上下文和人类指令以多种风格提供合适的语音响应。该模型采用超低比特率语音编解码器(750bps),模拟语义和声学信息,并通过多输入多输出语言模型(MIMO-LM)进行初始化。目前,SpeechGPT2还是一个基于轮次的对话系统,正在开发全双工实时版本,并已取得一些有希望的进展。尽管受限于计算和数据资源,SpeechGPT2在语音理解的噪声鲁棒性和语音生成的音质稳定性方面仍有不足,计划未来开源技术报告、代码和模型权重。
VALL-E 2VALL-E 2 是微软亚洲研究院推出的一款语音合成模型,它通过重复感知采样和分组编码建模技术,大幅提升了语音合成的稳健性与自然度。该模型能够将书面文字转化为自然语音,适用于教育、娱乐、多语言交流等多个领域,为提高无障碍性、增强跨语言交流等方面发挥重要作用。
AI-Faceless-Video-GeneratorAI-Faceless-Video-Generator是一个利用人工智能技术,根据话题生成视频脚本、语音和会说话头像的项目。它结合了sadtalker进行面部动画,gTTS生成AI语音和OpenAI语言模型生成脚本,提供了一个端到端的解决方案,用于生成个性化视频。该项目的主要优点包括脚本生成、AI语音生成、面部动画创建以及易于使用的界面。
kokoro-onnxkokoro-onnx是一个基于Kokoro模型和ONNX运行时的文本到语音(TTS)项目。它支持英语,并计划支持法语、日语、韩语和中文。该模型在macOS M1上具有接近实时的快速性能,并提供多种声音选择,包括耳语。模型轻量级,约为300MB(量化后约为80MB)。该项目在GitHub上开源,采用MIT许可证,方便开发者集成和使用。