Color-diffusion

8个月前发布 2 00

Color-diffusion是一个基于扩散模型的图像着色项目,它使用LAB颜色空间对黑白图片进行上色。该项目的主要优点在于能够利用已有的灰度信息(L通道),通过训练模型来预测颜色信息(A和B通道)。这种技术在图像处理领域具有重要意义,尤其是在老照片修复和艺术创作中。Color-diffusion作为一个开源项目,其背景信息显示,它是作者...

收录时间:
2025-05-29
Color-diffusionColor-diffusion

Color-diffusion是一个基于扩散模型图像着色项目,它使用LAB颜色空间对黑白图片进行上色。该项目的主要优点在于能够利用已有的灰度信息(L通道),通过训练模型来预测颜色信息(A和B通道)。这种技术在图像处理领域具有重要意义,尤其是在老照片修复和艺术创作中。Color-diffusion作为一个开源项目,其背景信息显示,它是作者为了满足好奇心和体验从头开始训练扩散模型而快速构建的。项目目前是免费的,并且有很大的改进空间。

数据统计

相关导航

ColorFlow

ColorFlow

ColorFlow是一个为图像序列着色而设计的模型,特别注重在着色过程中保留角色和对象的身份信息。该模型利用上下文信息,能够根据参考图像池为黑白图像序列中的不同元素(如角色的头发和服装)准确生成颜色,并确保与参考图像的颜色一致性。ColorFlow通过三个阶段的扩散模型框架,提出了一种新颖的检索增强着色流程,无需每个身份的微调或显式身份嵌入提取,即可实现具有相关颜色参考的图像着色。ColorFlow的主要优点包括其在保留身份信息的同时,还能提供高质量的着色效果,这对于卡通或漫画系列的着色具有重要的市场价值。
Diffusion Self-Distillatio

Diffusion Self-Distillatio

Diffusion Self-Distillation是一种基于扩散模型的自蒸馏技术,用于零样本定制图像生成。该技术允许艺术家和用户在没有大量配对数据的情况下,通过预训练的文本到图像的模型生成自己的数据集,进而微调模型以实现文本和图像条件的图像到图像任务。这种方法在保持身份生成任务的性能上超越了现有的零样本方法,并能与每个实例的调优技术相媲美,无需测试时优化。
InstantIR

InstantIR

InstantIR是一种基于扩散模型的盲图像恢复方法,能够在测试时处理未知退化问题,提高模型的泛化能力。该技术通过动态调整生成条件,在推理过程中生成参考图像,从而提供稳健的生成条件。InstantIR的主要优点包括:能够恢复极端退化的图像细节,提供逼真的纹理,并且通过文本描述调节生成参考,实现创造性的图像恢复。该技术由北京大学、InstantX团队和香港中文大学的研究人员共同开发,得到了HuggingFace和fal.ai的赞助支持。

暂无评论

您必须登录才能参与评论!
立即登录
none
暂无评论...